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The development of creep theory, particularly the proof of the theorem on the influence 

of creep on the state of stress and strain of an isotropic solid p and 261 arid the solution 

YZ of the plane contact problem of plasticity theory [S] 

fW 
produced hypotheses for the analysis of contact prob- 

,, lems of creep theory taking account of material age- 
ing. The new effective method of solving first and 
second kind Fredholm integral equations [18 and 191, 

which permits obtaining solutions if the solution of 
* 5 the corresponding equation with unit right side is 

known, also played an essential part. Let us note that 
from the mechanics viewpoint this solution corre- 
sponds to the solution of the plane contact problem 
for the case of pressure of a rigid stamp with a recti- 

Fig. 1 linear base on a half-plane. 

1. P1bn0 Contact problam of creep theory, Prokopovich BS] first 
studied the plane contact problem of linear creep theory. The known solution of elastr- 
sity theory [38] and the fundamental equations l?!] of hereditary theory of ageing per- 
mitted him to obtain the following Formula : 
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Vi* Ct)= +[Fi(t)-Li] \3i-(2. S)p* (S, t)dS + Ci (t) 

B 

Ki (t, IT) = & {[I - Vi*a (t, T)] 6i (t. T)}, I (5. S) = In h 

(1.1) 

(1.2) 

(1.3) 

to determine the vertical displacement Ui of the boundary of the ii th half-space under 

plane strain conditions and loaded by normal forces p*(x, 6) applied to the area 3. 

Here Ei (6) is the modulus of elastic instantaneous strain, 6, (6, 7) the total relative 
strain, and vi ( ti) and vi*( t, 7) are the lateral expansion coefficients for the elastic 

strains and creep strGns of the $th half-space, respectively (*) . 
Let the two bodies (Fig. l), contacting at a point or along a line and possessing the pro- 

perty of linear creep, be pressed against each other under the effect of external forces 
whose resultant P( 6) is perpendicular to the paxis and passes through the origin. The 
relationship which the displacement of points of the contact domain between these 

bodies should satisfy is, as is known 

ul* (t) + uz* (t) = A* (t) - h (4 - fa (i4 A* (t) = A*, (t) + As* (t) (I.41 

Here A*( ti) is the approach of these bodies in the g direction, and s(x) and &(x) 
are the equations of the surfaces bounding the first and second bodies. 

If it is assumed that there are no friction and adhesion between the compressed bodies, 
then each of these bodies will experience only a normal pressure p'(X) 6) on the con- 
tact section. But the contact domain will usually be small in comparison with the size 
of the compressed bodies, hence it may be considered that the displacements on the con- 

tact section of the compressed bodies will be the same as at the boundary points of two 
half-planes (upper and lower) subjected to the same norma- pressure p*(x, 6) as are the 
considered compressed bodies. 

Utilizing (1.1) and (1.4). Prokopovich obtained the following integral equation to 
determine the contact pressure p ‘(x, 6) : 

t 

s II (2, s) p* (s, t) ds - ss x(x, s)P*(s, t)K(t, z)dsdz~F(z, tl (1.5) 
S 51 S 

K(t, z)= 
KI (4 T) + Ka lt, T) fo (4 

PI (q + Fz(t) ’ F(x, t)= c(t) -e(t) 

fo (2) = fl(4 + fa (41 0 (t) = A [FI (t) + Fz (111 

(1.6) 

l ) The total relative strain 6( tit 7) observed at time 6 and caused a unit stress applied 
at some a e of the material 7 , is composed of the elastic-instantaneous strain and the 
creep stra n and is defined by the dependence e 

where E(7) is the variable modulus of instantaneous strain, and c( 6, 7) is the measure 
of the material creep dependin 

f loading action. The measure o 
on the age of the material and on the duration of the 
creep is understood to be the relative creep strain of 

ageing material observed up to the time ti and caused by unit stress applied at some 
age 7. 
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where A is a known quantity which depends on parameters of the material, and &(x) 

and fn(x) are equations of the contact surfaces of the first and second bodies, c( 6) 

is a function connected with the total inelastic displacement n *( fi) . 
The integral Eq. (1.5) permits seeking the intensity of the contact pressurep*(X , $) 

as a function of the position of points along the contact width and of the duration of the 

effect of the loading. This equation may be represented more compactly as: 

which permits reduction of the problem of determining the unknown contact pressure 
p*(x, 6) to the successive solution of interrelated integral Eqs. (1.7). 

The first of these Eqs. , which U)(X, t) should satisfy as a function of the time fi , takes 
account of the influence of material creep on the contact pressure distribution p”(x, 6) 

and is a linear Volterra integral equation of the second kind, which has been investigated 

in detail in [l, 2,28 and 333 for various cases of the creep kernel K( 6, 7) . If the assump- 
tion v (T) -z I’* (7) v -=y collst (1.k) 

is made, this equation takes a form analogous to the equation describing the state of 

stress of a system comprised of two inhomogeneous elements in the presence of forced 
strains p8]. If two contiguous bodies possess identical elastic moduli and identical creep 

measures, then tile first Eq. in (1. 7) is analogous, under the conditions (1. 8), to the equa- 
tion describing stre.ss relaxation in a homogeneous and isotropic solid [‘2 and 281. 

The second integral Eq. in (1.7) which p ‘(x, $) should satisfy as a function of X, is 
a singular Fredholm integral equation of the first kind with kernel ??(x, S) (defined by 

(1.3)) and riglrt side W(X, 6) which is a solution of the first Volterra integral Eq.(l. 7). 
If the solution of the first integral Eq. in (1.7) is represented as 

0 (T, 1) =: Y (4 - H (t) lo (z) (1.9) 

and, moreover, the Krein method [19] is utilized to solve the second integral Eq. in(1.7) 
with the right side (1.9) where the conditions (1. 8) are taken into account, then the fol- 
lowinr I’ormula a 1‘ 

is obtained to determine p*(X. $) in the case of the symmetric contact problem for 
the IWO bodies under linear creep conditions taking account of material ageing. 

Let us note that the function H(e) which is the solution of the first integral Eq. in 

(1.7) with right side l/8 (ti) , takes account of the influence of elastic instantaneous 
strains and creep strains of compressed bodies taking account of material ageing, on the 
contact pressure p’(Jc, 6) in the considered time period. 

The first member in (1.10) is a solution with singularities at the points X= *a, and is 
subject to being retained only in the case of a given contact with 2a ; the unknown 
function y( 6) is hence determined from the equilibrium Eq. 

,I 
I’ (1) mz \ p” (.I‘, 1) dr (1.,11) 

. 

When the contact width 2a = ea( t) ii”,ot given, i.e., the contact between the com- 
pressed bodies occurs along smooth surfaces, then the unknown function y= y( 6) is de- 
termined from the requirement that the first member in (1. lo), which is a solution with 
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a singularity, will vanish, i.e., Y( 6) = 0 , and the time varying contact width 2a.= 2a(t) 
will be determined from the equilibrium Eq. (1.11). 

Simple computational formulas are obtained for the case of contact along surfaces of 

particular form. For example, for contact along the cylindrical surface fo(X, = fx/fl , 
when the contact width is not given 

/I(t) 2RP (1) 
P* (XV t) = nH ( 

m2 ‘!z 

II(t) ) 
(1.12) 

Formulas to determinep*@,t) in the case of the antisymmetric contact problem of 
two bodies under linear creep conditions with material ageing taken into account are 

presented by an analogous means in pS]. 
It was later shown in [25] that the solution of the plane contact problem of linear 

creep theory taking account of material ageing for two symmetrically disposed contact 
sections (--a < x < - b, b < x < a) reduces to the solution of the integral Eqs. (1.7), 

wherein the second of these Eqs. (1.7) has the kernel 

1 
K (z, s) = ln n (1.13) 

The solution is constructed by using a substitution of variables and introduction of a 
new function Q (6, 5) connected with the pressure p*(x, $) and defined by a formula 

analogous to (1.10) . 
Shirinkulov 1371 established that the plane contact problem of linear creep theory 

taking account of material ageing for bodies whose elastic modulus ages with depth 

according to a power law can also be reduced to the solution of two integral Eqs. of the 

type (1.7). 
In another paper by the same author 1361 a solution of the plane contact problem of 

linear creep theory taking account of friction when coefficients of lateral expansion of 

the compressed bodies are equal and constant in time, is presented on the basis of here- 
ditary theory of ageing. 

The equilibrium of two compressed orthotropic bodies under plane strain and linear 
creep conditions with ageing of the material taken into account is examined in [35]. 

Considerably greater difficulties must be overcome in examining the contact problem 
taking account of nonlinear creep of the material. This is related to the fact that an 

analysis of the problem of equilibrium of a half-plane (half-space) loaded by a concen- 

trated force P( t ) applied to its boundary and the derivation of formulas to determine 
the displacement of this boundary under the effect of a distributed pressure $3 l (X, t ) 

should precede the construction of the solution. 
The plane contact problem of nonlinear creep theory was considered in 141. The fun- 

damental dependence between the strain intensity G( 6) and the stress intensity U(t) 

is taken according to the theory of plastic heredity with material ageing taken into 
account 12 and 30],as t 

I+@ (t) = d (t) - 1 Q (z) K(t, 7) dr (1.14) 

+1 

( K(f, 
ace, T) 

r)=,, 9 Ko>Ov O<P<~) 
Here C( t, 7) is the measure of creep, and Ko and P are physical constants of the 

material. The material is assumed incompressible. 
We then obtain the following Formula 141: 
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v*(c)=A[(l-L)P(c)]m[s-~p+D(c), A=& t 
1 , m=- 
CL ) (1.15) 

to determine the vertical displacement U*( 6) of the half-plane boundary (or of the half- 
space boundary in the plane strain case) under the effect of a concentrated forcep (6) 

with nonlinear creep and material ageing taken into account. Here X is the moving 
abscissa of points of the half-plane boundary for which the displacement U*( 6) is deter- 
mined, ,?, is the Volterra operator with the creep kernel (1.2) or (1.14) ; s is the abscissa 

of points of application of the force _?‘( t) ; J is a known constant dependent on II. 
Furthermore, it has been shown in [4] that if the pressure diagram p *( X, 6) acting 

on the contact section S(a 4X s b) is divided into strips of width n s j and height 
p* {Si, t) (i -= 1, 2 ,..., n) and the effect of one of these strips (say, the jth with the 

abscissa X = s J ) in the lower half-plane is considered, then the boundary point of this 

half-plane with arbitrary abscissa X will receive a displacement U “( 6) in the y direc- 
tion which is determined by using Formulas 

2, (t) = [v’ (t) - u (t)lk”, i(t)= hj(t)P* (Sj, t) ASj, (1.16) 

hj(t)= A') Sj - Z I'*-'(! -L) (4.17) 

Henceforth, i( t) will be called the generalized displacement. of points of the half- 

plane boundary. It is here important to note that, as follows from (1.17)) the generalized 
displacement D( 6) in this case depends on the effective force ; it does not hold for any 

point of the body for the true displacements V *( 6) . 

Under the simultaneous action of a system of forces pj ( 6) =p ‘(S j , i? ) &! J Gf = 1, 
2 , . . . . n) ; (n is the number of strip elements of width OsJ on the contact section) on 

the contact section s (c! SX 5 b) , the possibility of representing the generalized dis- 
placement 0 ( t ) as 

G (2) = $J hj (t) P* (S, C) Asj $ .i’ Cjk (t) p* (I, t) P* (S&, t) P* (Sj, t) A*qjAsh f a 3 . (1.18) 
j-1 j, I.=1 

by utilizing a Taylor series expansion is proved, where the prime of the summation 
means that terms with j = k are omitted. 

Because of the smallness of the contact section s (CJ 5~ 5 b) ., it is possible to limit 

oneself to the first principal term of the expansion in (1.18) for the generalized displace- 
ment u’( 6) with the degree of accuracy which is customary in solving this problem. 
After having passed to the limit As j -+ 0 this permits the following Formula 

i (C) =z’.,ll’ (1 - L) I I R (27, s) p* (s, t) dSi , 1 &cc, s) = 
1 

( s - 2 11-k 
(1.19) 

S 
to be obtained to determine the generalized displacements of the 5th half-plane bound- 
ary caused’by the pressure p*(x. 6) acting on the contact section L?(a%$b) . 

Therefore.( 1.19) expresses and gives a foundation to a principle for the approximate 
superposition of generalized displacements c( t ) , which affords the possibility of redu- 
cing the solution of the plane contact problem of nonlinear creep theory taking account 

of material ageing (or the theory of plasticity with power hardening) to the joint solu- 
tion of two interrelated integral Eqs. of the form 

t 
o(2, 1) - c o(r, z)K(t, r)dr= F(r, t), s P* (s. Ods = ” p 1) (1.20) . 

71 SI .T-_2 11-k ’ 
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Here Jl , Ja , I& , Koa are material constants of the first and second bodies. 

Hence, even in a nonlfnear formulation based on the physical dependence (1.14) the 
contact problem of hereditary creep theory is reduced to the successive solution of two 

interrelated integral Eqs, (Ii 20). The solution of the first Eq. in (1.20) has been studied 
well enough for different kernels K( $; I) in & 2,26,30 and 337 and hence, seeking 

the function W(x, 8) is not difficult. The solution of the Fredholm singular integral 
equation of the first kind (1.20) is constructed by the Krein method [I8 and 191, when 
the contact domain S between the bodies is a strip - a SJ$ a, 

is obtained for the case, say, of the symmetric contact problem of two bodies under non- 
linear creep conditions, 

Here r(Z ) is the Gamma-function, 
For a given contact width 213 the unknown function y = y (6) is selected so that con- 

dition (1.11) is satisfied, which is equivalent to 

(1.23) 

The quandty 2a = 2a( 6) is determined from this same equation for a contact width 
not given : the function y( 8) should hence satisfy the condition that the first term in 

(1.22), which is the solution with singularities. will vanish, i.e., the condition 

01’ (a, $9 Y) = 9 (1.24) 

The antisymmetric plane contact problem taking account of nonlinear creep has also 
been studied and solved. It should be noted that the case of arbitrary loading of com- 

pressed bodies cannot be obtained by superposition of the above mentioned two cases 

(symmetric and antisymmetric). but should be solved separately as an independent prob- 

lem 141 I 
The equation and the formulas obtained in [4] for $ = T, are the solution of the plane 

contact problem of plasticity theory with power hardeneing of the material [5], and for 
@ = 1 the solution of the plane contact problem of elasticiry theory &38]. For m = 0, as 
has been shown in [4], the pressure under a rigid plane stamp p’(x) , obtained accord- 

ing to (1.22), agrees with the distribution law corresponding to the known Prandtl solu- 
tion [WI. 

On the basis of the solution in [4], Manukian [24] studied the problem of impressing 
a rigid wedge into a half-plane under unsteady creep conditions. Cases for the contact 

width given and not given were examined and formulas were derived to determine Y(t) 

and a($) . 
The plane contact problem of nonlinear creep theory in the presence of friction under 

steady creep conditions has been examined in p]. The dependences between the strain 
rate intensity C and the stress intensity U are taken as 

P&e’ = G (Q<P<ij (I.25) 



912 N. Kh. Arutiuntan 

Here Ko and p are material constants. 
If it is assumed that one of the bodies is fixed and a normal pressure P(X) and Cou- 

lomb friction 4 (;G) = kp(x) act on the contact section between the contacting bodies, 

and the superposition principle for generalized displacements is utilized, the solution of 
the problem of nonlinear creep theory taking account of friction reduces to the solution 

of a Freholm singular integral equation of the first kind of the following form: 

(1.26) 

Here al , aa and gl are constants determined in terms of the physical constants of 

the material &, and p. and the friction coefficient k. 
The structure of the kernel of this integral equation necessitated a special development 

of a method to obtain the solution. For the case of impression of a rigid stamp with a 

rectilinear base into a half-plane, i. e., when the right side of the singular integral Eq. 

(1.26) is a constant, an exact solution of this integral equation in closed form has suc- 

cessfully been obtained [7]. By utilizing this solution. Formula 

r P/2 (3 - CL)) r ?/2PL) r (v - P) sin 51 (cl - P) a + 2 %P-G 

P (2) = 2a’-” 1’ (1 - p) v/x Jt f(,f qP a -x ( 1 

has been obtained to determine the contact pressure p(X) , which contains a constant p 

defined in terms of the parameters al , CZ, and 1-I . 
Manukian [‘24a] has extended the solution of the contact problem taking account of 

friction to the unsteady creep case described by the dependence (1.14). 

2, Threa-dlman#lonrl contact problem of creep theory, Kakosi- 
midi and Prokopovich 1141 studied the three-dimensional contact problem of creep the- 

ory in a linear formulation. Upon compliance with condition (1.8) a formula has been 
obtained to determine the vertical displacements of the boundary of the 5th half-space 

z.~* (1) = .$ [ ri (t) - $1 \ s ?? (s, q) p* (s, q, t) ds dq (2.1) 
{S) 

1 - v.2 
(.liZ 1 

n ’ Fi lt) = T?f@ ’ ’ (” q, z f/(28 !+ ty2 _ q8p ) 

Here the operator Li is defined by the relationship (1.8). 
The unknown contact pressure p*(X, g, fi) is determined from the integral Eq. 

\\ XL\ .q) P* (s, q. t)ds dq - $ \\ p(s, q)K(t, z)p*(s, q, -c)dsdqdz= F(z, y. t) (2.2) 
isi f, isj 
which is analogous to (1.5) and admits of representation as the two Eqs. 

0 (.t., !I, t) - \ ~(2, y, z) K(t, r) dz = F (2, Y, t). (2.3) 
L 
-I 

o (1, Y, t) = \ \ ?? (s. q) P* (s, q, t) ds dq 
isj 

Here KC Z?. 7) and A%?. Y, 8) are defined by formulas analogous to (1.6) by taking 
into account that fO = f. (2, y) = fl (x, y) + f2 (I. y). 

The integral Eqs.(& 3) and (1.7) are complete:y identical. The second Eq. in (2.3) 
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describes the elastic instantaneous problem for a fixed time 6. 

The three-dimensional problem of linear creep theory taking account of material 
ageing was also considered by Predeleanu 1391; the obtained results were applied, in 

particular, to the solution of the contact problem of two spherical bodies subjected to 

a constant compressive force. 
In [ll] Efimov examined the axisymmetric contact problem for linearly viscoelastic 

bodies. The author expresses the contact pressure in terms of an integral operator acting 

on some function of the coordinate r and the time t which maps the influence of the 
loading and unloading. It has been established that the connection between the contact 

pressure .and the radius of the contact circle under repeated unloading does not depend 
on the complete history of th’e contact process, but on the appropriate “truncated trajec- 

tory” of loading-unloading. 
On the basis of ideas developed in [4 and 51, Kuznetsov solved the problem of impres- 

sion of a rigid stamp in a half-space under nonlinear creep conditions characterized by 
a physical equation analogous to (1.14), or for power hardening of the material. Analysis 
of the problem of equilibrium of a half-space taking account of material creep under 
the effect of a concentrated force P( $) , deduction of formulas to determine the dis- 

placement of the boundary of this half-space under steady creep conditions under the 

effect of the distributed pressure p”(X, ,y, 6) and, finally, the solution of the problem 
of impression of a stamp in a half-space with power hardening of the material all pre- 

ceded the construction of the solution of the problem under consideration. 

The solution of the problem of impression of a rigid stamp in a half-space for non- 

linear creep of the material is based on the possibiliq of representing the vertical dis- 

placements of the half-space boundary by Formula 

v* (t) = A I(1 -L) 11 k (s, q) p* (s, q, t) ds dqlm , 1 mzp_ 
I_ P 

(2.4) 
(S) 

which is obtained by starting from the superposition principle for the generalized dis- 
placements. Here A is a known quantity dependent on the material parameters Ko and 

p( 0 <I_I < 1) , the operator L is determined according to (1.2) and (1.3) or (1.14). and 
the kernel is 

(2.5) 

This formula permitted reduction of the problem of determining the unknown contact 

pressure p ‘(X, y, 6) Jo the solution of two integral equations of the type (2.3). The 
kernels K($, 7) and K(S , r)) are here taken in accordance with (1.3), (1.14) and(2.5). 

and F(X, y, t ) according to (I+, 21) taking into account that 

f. (r y) = 11 (II Y) + la (? Y) 
II 

and y( 6) , in the general case, is y (t) = A* (t) $ a (t)z + P (t)Y; three equilibrium 
conditions for the stamp are used to determine the unknown functions A* (t), a (t) and 

B(t). 
The case of a stamp with a flat elliptical base and the case of an axisymmetric stamp 

have been considered in 1211. 
All the solutions obtained in the above mentioned papers for the problems of contact 

between two bodies under unsteady creep conditions refer to cases when the determina- 
tion of the contact pressure p ‘(x, 6) reduces to the successive solution of two interre- 
lated integral equations of type (1.20) or (2.3). 
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Naturally it turned out to be possible to obtain the solution of contact problems of 
unsteady creep theory from this kind of system of equations because of definite assump- 
tions on the physical dependence between the stresses and strains which underlies heredi- 
tary creep theory. 

It is characteristic that according to the solutions obtained above, creep of the material 
of bodies in contact does not affect the distribution law of the contact stresses in time, if 

the contact between these bodies is along a line or a plane, as for example in the impres- 
sion of rigid stamps in a half-plane or in a half-space under unsteady creep conditions. 

Creep of the material of bodies in contact infuences the pressure distribution only when 
the contact between these bodies is along curved surfaces, where the contact area chan- 
ges in time under the prolonged action of the loading for an unspecified contact width. 

3. Taking account of crerp of the br8a in 8olvlng different 
con t act pro b 1 a m fi, Questions of the analysis of beams on an elastic foundation 
possessing creep have been examined by Rzhanitsyn pl], Rozovskii 1341, Gol’denblat and 

Nikolaenko 183 and Prokopovich 1281. 
A solution is presented in these papers for the problem of analyzing beams of a eonti- 

nuous foundation when the beam and foundation materials correspond to the rheological 
model of a viscoelastic Kelvin body, or are subject to the laws of the linear theory of 
elastic heredity. 

Rozovskii 1321 gave a solution of the problem of deformation of a foundation beam 

taking account of creep of the foundation when the latter is subject to the Winkler bed- 
ding coefficient. 

In 1171 Kiiss presented an analysis of reinforced concrete beams taking account of creep 
of the concrete and the foundation by starting from the condition that the curvatures of 

the beam and the foundation surface are equal. To solve the original problem Kiiss used 

approximate methods. As an application he examined a problem in which the foundation 

is laminar. Ageing of the beam and foundation materials was not taken into account in 
solving the problem. 

A peculiar contact problem is the problem of the thermally stressed state of a massive 
concrete block on a rock or pre-laid concrete foundation. Tine appropriate solution of 

the plane problem has been expounded in 131; the authors assumed that an elastic layer 
is disposed between the foundation and the block. This solution was later expanded by 
Manukian and Zadoian and applied to circular [23] and rectangular blocks [12] taking 
account of creep of the concrete. Prokopovich proposed an approximate method of ana- 
lizing concrete blocks taking account of their elastic properties and the creep of the 

foundation. T‘ne appropriate solution allowed for clarification of the peculiarities of the 
influence of the relationship between the geometric dimensions of the blocks on its 
thermally stressed state @7] and was a basis for the creation of a practical computational 
method [29]. This method permits taking account of: the change in the temperature and 

humidity regimes, the geometric dimensions of the block, the construction of the founda- 
tion, the change in modulus of elastic instantaneous strains, and the stress relaxation 
because of creep of the concrete. The thermally stressed state of a system of two mas- 
sive blocks has recently been studied PO]. 

On the basis of the Prokopovich ideas [26]. Kakosimidi [13], using the hereditary theory 
of ageing, developed an approximate method of analyzing foundation strips and circular 
slabs [15] on a creep-elastic foundation. To describe the mechanical properties of the 



Contact problems of creep theory 915 

foundation, the author used the model of a creep-elastic half-space subject to plane 

strain. The problem was reduced to solving a Volterra integral equation of the second 

kind. Taking account of creep of the foundation in the analysis of foundation strips (as 
well as beams) leads to a growth in the nominal forces, to a noticeable redistribution in 

the concrete pressures, and an increase in the bending moments. 

Erzhanov [9] considered several problems devoted to the investigation of the stress- 
strain state of underground structures taking account of the creep of rock strata on the 

basis of the Rabotnov hereditary creep theory. He investigated the stress-strain state of 
a mountain mass around a reinforced and unreinforced mine and horizontal excavation 

taking account of creep of the rock. 
Erzhanov and Egorov [lo] investigated the mechanism of growth of folded structure in 

the earth’s core for tectonic processes by starting from the model of a relaxing viscoelas- 
tic body represented by Volterra equations. 

Utilizing general principles of thermodynamics, Lapidus r22] obtained, under certain 
assumptions, a hereditary influence function for rock strate which agrees outwardly with 
the Kohlrausch-Bronsky function and well with experiment. 
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THICKNESS 

We investigate shear oscillations of a thin elastic layer 0 s,? s&x) of variable thick- 

ness, where h(x) is a sufficiently smooth function, One boundary of this layer is free, 
while the other is in contact with a nonhomogeneous elastic medium, the contact defined 

by a boundary condition containing an impedance. Oscillations are of high-frequency 

Here u) is the frequency and b denotes the rate of propagation of shear waves. The 

displacement vector is parallel to the Y-axis. 
Solution of the problem is constructed in the form of special asymptotic power series 

in st-“~. Displacements of the layer are expressed in terms of ?&x) and of the properties 
of the elastic medium in contact with the layer. Expressions are found for the phase and 

group velocity within the layer. Final formulas are also obtained by another method 
based on the idea of constructive interference of the volume waves. Radial interpretation 
of the dependence of wave intensity on the variables x and z and ray tracing method, 
are used to obtain the decay of perturbations propagating along the layer. 


